MATH 5010: Linear Analysis: Complementary Exercise December 2019

1. (i) Let X be a normed space. Suppose that every 2-dimensional subspace of X is an inner product space. Show that X is an inner product space.

Proof:: Recall that a normed space is an inner product space if and only if for each pair of vectors x and y in X must satisfy the Parallelogram identity, i.e., $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. Part (i) follows from this fact directly.

(ii) Let (x_n) and (y_n) be the sequences in a Hilbert space H. Suppose that the limits $\lim ||x_n||$, $\lim ||y_n||$ and $\lim ||\frac{x_n+y_n}{2}$ $\frac{y+y_n}{2}$ exist and are equal. Show that if (x_n) is convergent, then so is (y_n) .

Proof: Notice that Parallelogram identity gives

$$
\left\|\frac{x_n+y_n}{2}\right\|^2 + \left\|\frac{x_n-y_n}{2}\right\|^2 = \frac{1}{2}(\|x_n\|^2 + \|y_n\|^2)
$$

for all *n*. Thus, if we put $L := \lim ||x_n|| = \lim ||y_n|| = \lim ||\frac{x_n+y_n}{2}$ $\frac{+y_n}{2}$, then we see that

$$
\|\frac{x_n - y_n}{2}\|^2 = \frac{1}{2}(\|x_n\|^2 + \|y_n\|^2) - \|\frac{x_n + y_n}{2}\|^2 \longrightarrow \frac{1}{2}(L^2 + L^2) - L^2 = 0 \text{ as } n \to \infty.
$$

This implies that $\lim ||x_n-y_n|| = 0$ and thus, we have $\lim y_n = \lim x_n + \lim (y_n-x_n)$. The proof is finished.

2. Let $D := \{x \in \ell^2 : \sum_{n=1}^{\infty} n^2 |x(n)|^2 < \infty\}$. Define a linear operator $T : D \to \ell^2$ by $Tx(n) := nx(n)$ for $x \in D$ and $n = 1, 2...$ Show that the operator T satisfies the condition $(Tx, y) = (x, Ty)$ for all $x, y \in D$ but T is not bounded.

Proof: We first show that we have $(Tx, y) = (y, Tx)$ for all $x, y \in D$. In fact, we have

$$
(Tx, y) = \sum_{n=1}^{\infty} (Tx(n))\overline{y(n)} = \sum_{n=1}^{\infty} nx(n)\overline{y(n)} = (x, Ty).
$$

Next, we claim that T is unbounded. In fact, we let $e_k(n) = 1$ if $n = k$, otherwise, is equal to 0. Then we have $e_k \in D$ and $||e_k|| =$. Notice that we have $||Te_k|| = k$ for all $k = 1, 2, \dots$ Thus, the map T is unbounded. The proof is finished.

- 3. For each $x \in \ell^{\infty}$, define a linear operator M_x from ℓ^2 to itself by $M_x(\xi)(k) := x(k)\xi(k)$ for $\xi \in \ell^2$ and $k = 1, 2...$.
	- (i) Show that $||M_x|| = ||x||_{\infty}$ for any $x \in \ell^{\infty}$.

Proof Notice that for each $\xi \in \ell^2$, we have

$$
||M_x(\xi)|| = \sum_{k=1}^{\infty} |x(k)\xi(k)|^2 \le ||x||_{\infty} \sum_{k=1}^{\infty} |\xi(k)|^2 = ||x||_{\infty} ||\xi||_2.
$$

This gives $||M_x|| \le ||x||_{\infty}$. It remains to show that $||M_x|| \ge ||x||_{\infty}$. Fix a positive integer k and let $e_k \in \ell^2$ be as in Question 2. Then we have $|x(k)| = |M_x(e_k)| \le ||M_x||$ as desired.

(ii) Show that M_x is selfadjoint if and only if $x = \bar{x}$, where $\bar{x}(k) := \bar{x}(k)$. (See Prop 10.3)

Proof: Recall that an operator T from a Hilbert space H to itself is said to be selfadjoint if $(T u, v) = (u, Tv)$ for all $u, v \in H$. Now if $x = \bar{x}$, then we have

$$
(M_xu, v) = \sum_{k=1}^{\infty} x(k)u(k)\overline{v(k)} = \sum_{k=1}^{\infty} u(k)\overline{x(k)v(k)} = (u, M_xv)
$$

for all $u, v \in H$. Thus, M_x is selfadjoint.

Conversely, if M_x is selfadjoint, then we consider $e_k \in \ell^2$ as above, we have $(M_xe_k, e_k) = x(k)$ and $(e_k, M_xe_k) = \overline{x(k)}$ for all $k = 1, 2, ...$ The proof is finished.

4. Let X be a normed space and let S_{X^*} be the closed unit sphere of X^* . Suppose that there is $0 < r < 1$ such that $S_{X^*} \subseteq \bigcup_{k=1}^n B(x_k^*, r)$ for some $x_1^*, ..., x_n^*$ in X^* with $||x_k^*|| = 1$ for all $k = 1, ..., n$. Define a linear map $T: X \to c_0$ by

$$
T(x) = (x_1^*(x), \dots, x_n^*(x), 0, \dots) \in c_0.
$$

(i) Show that $||T|| = 1$.

Proof If $x \in X$ with $||x|| \leq 1$, then we have $|x_k^*(x)| \leq 1$ for all $k = 1, 2, ...n$ and hence, we have $||T|| \leq 1$. On the other hand, since $|M_x(e_k)| = 1$, we have $||T|| = 1$ as desired.

(ii) Show that $||x|| \le \frac{1}{1-r} ||Tx||$ for all $x \in X$ (Hint: Use Prop 5.9).

Proof Notice that there is an element $f \in X^*$ with $||f|| = 1$ such that $||x|| = f(x)$. Also, by the assumption, there is x_k^* such that $||x_k^* - f|| < r$. This implies that

$$
||x|| = |f(x)| \le |((f - x_k^*)(x))| + |x_k^*(x)| \le r||x|| + ||Tx||.
$$

This gives $||x|| \leq \frac{1}{1-r} ||Tx||$. The proof is finished.

(iii) Show that the operator is an isomorphism from X onto a subspace $T(X)$ of c_0 and $||T^{-1}|| \leq 1/(1-r).$

Proof Note that Part (ii) implies that the map T is injective and

$$
||T^{-1}(Tx)|| = ||x|| \le \frac{1}{1-r}||Tx||
$$

for all $x \in X$ and hence, we have $||T^{-1}|| \leq 1/(1-r)$.

End