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1. (i) Let X be a normed space. Suppose that every 2-dimensional subspace of X is an

inner product space. Show that X is an inner product space.

Proof:: Recall that a normed space is an inner product space if and only if for

each pair of vectors x and y in X must satisfy the Parallelogram identity, i.e.,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2). Part (i) follows from this fact directly.

(ii) Let (xn) and (yn) be the sequences in a Hilbert space H. Suppose that the limits

lim ‖xn‖, lim ‖yn‖ and lim ‖xn+yn
2
‖ exist and are equal. Show that if (xn) is conver-

gent, then so is (yn).

Proof: Notice that Parallelogram identity gives

‖xn + yn
2
‖2 + ‖xn − yn

2
‖2 =

1

2
(‖xn‖2 + ‖yn‖2)

for all n. Thus, if we put L := lim ‖xn‖ = lim ‖yn‖ = lim ‖xn+yn
2
‖, then we see that

‖xn − yn
2
‖2 =

1

2
(‖xn‖2+‖yn‖2)−‖

xn + yn
2
‖2 −→ 1

2
(L2+L2)−L2 = 0 as n→∞.

This implies that lim ‖xn−yn‖ = 0 and thus, we have lim yn = limxn+lim(yn−xn).

The proof is finished.



2. Let D := {x ∈ `2 :
∑∞

n=1 n
2|x(n)|2 < ∞}. Define a linear operator T : D → `2 by

Tx(n) := nx(n) for x ∈ D and n = 1, 2.... Show that the operator T satisfies the

condition (Tx, y) = (x, Ty) for all x, y ∈ D but T is not bounded.

Proof: We first show that we have (Tx, y) = (y, Tx) for all x, y ∈ D. In fact, we have

(Tx, y) =
∞∑
n=1

(Tx(n))y(n) =
∞∑
n=1

nx(n)y(n) = (x, Ty).

Next, we claim that T is unbounded. In fact, we let ek(n) = 1 if n = k, otherwise, is

equal to 0. Then we have ek ∈ D and ‖ek‖ =. Notice that we have ‖Tek‖ = k for all

k = 1, 2, .... Thus, the map T is unbounded. The proof is finished.



3. For each x ∈ `∞, define a linear operator Mx from `2 to itself by Mx(ξ)(k) := x(k)ξ(k)

for ξ ∈ `2 and k = 1, 2.....

(i) Show that ‖Mx‖ = ‖x‖∞ for any x ∈ `∞.

Proof Notice that for each ξ ∈ `2, we have

‖Mx(ξ)‖ =
∞∑
k=1

|x(k)ξ(k)|2 ≤ ‖x‖∞
∞∑
k=1

|ξ(k)|2 = ‖x‖∞‖ξ‖2.

This gives ‖Mx‖ ≤ ‖x‖∞. It remains to show that ‖Mx‖ ≥ ‖x‖∞. Fix a positive in-

teger k and let ek ∈ `2 be as in Question 2. Then we have |x(k)| = |Mx(ek)| ≤ ‖Mx‖
as desired.

(ii) Show thatMx is selfadjoint if and only if x = x̄, where x̄(k) := x(k). (See Prop 10.3)

Proof: Recall that an operator T from a Hilbert space H to itself is said to be

selfadjoint if (Tu, v) = (u, Tv) for all u, v ∈ H.

Now if x = x̄, then we have

(Mxu, v) =
∞∑
k=1

x(k)u(k)v(k) =
∞∑
k=1

u(k)x(k)v(k) = (u,Mxv)

for all u, v ∈ H. Thus, Mx is selfadjoint.

Conversely, if Mx is selfadjoint, then we consider ek ∈ `2 as above, we have

(Mxek, ek) = x(k) and (ek,Mxek) = x(k) for all k = 1, 2, ... The proof is finished.



4. Let X be a normed space and let SX∗ be the closed unit sphere of X∗. Suppose that

there is 0 < r < 1 such that SX∗ ⊆
⋃n

k=1B(x∗k, r) for some x∗1, ..., x
∗
n in X∗ with ‖x∗k‖ = 1

for all k = 1, ..., n.

Define a linear map T : X → c0 by

T (x) = (x∗1(x), ...., x∗n(x), 0, ....) ∈ c0.

(i) Show that ‖T‖ = 1.

Proof If x ∈ X with ‖x‖ ≤ 1, then we have |x∗k(x)| ≤ 1 for all k = 1, 2, ..n and

hence, we have ‖T‖ ≤ 1. On the other hand, since |Mx(ek)| = 1, we have ‖T‖ = 1

as desired.

(ii) Show that ‖x‖ ≤ 1
1−r‖Tx‖ for all x ∈ X (Hint: Use Prop 5.9).

Proof Notice that there is an element f ∈ X∗ with ‖f‖ = 1 such that ‖x‖ = f(x).

Also, by the assumption, there is x∗k such that ‖x∗k − f‖ < r. This implies that

‖x‖ = |f(x)| ≤ |((f − x∗k)(x)|+ |x∗k(x)| ≤ r‖x‖+ ‖Tx‖.

This gives ‖x‖ ≤ 1
1−r‖Tx‖. The proof is finished.

(iii) Show that the operator is an isomorphism from X onto a subspace T (X) of c0 and

‖T−1‖ ≤ 1/(1− r).

Proof Note that Part (ii) implies that the map T is injective and

‖T−1(Tx)‖ = ‖x‖ ≤ 1

1− r
‖Tx‖

for all x ∈ X and hence, we have ‖T−1‖ ≤ 1/(1− r).

End


